Secure Embedded Systems

1
Michael Vai, David Whelihan, Ben Nahill, Dan Utin, Sean 0O’Melia, and Roger

3 Khazan

4 Abstract

5 Department of Defense (DoD) systems are increasingly the targets of deliberate and sophisticated

6 attacks. In order to assure mission success, military systems must be entrusted to perform its intended

7 functions, prevent attacks, and even operate with resilience under attack. DoD has thus directed that

8 cyber security must be integrated into system life cycles [1], the practice of securing a system after it has

9 been designed is no longer acceptable. However, the co-design of security with functionality has to
10 overcome a major challenge; rarely can the security requirements be accurately identified when the
11 design begins.
12 This paper gives an overview on Lincoln Laboratory’s co-design methodology for secure embedded
13 systems, which consists of an architecture that decouples secure and functional design aspects and a
14 few enabling technologies. This architecture uses cryptography to ensure the confidentiality and
15 integrity of an embedded system being designed. The development of a hypothetical secure embedded
16 system for an unmanned aerial system (UAS) is used to illustrate our co-design methodology. We will
17 also briefly describe our ongoing effort in adding resiliency to a secure embedded system so that it can
18 continue to function under attack for enhanced availability.
19 Introduction
20 Lincoln Laboratory is at the research and development (R&D) forefront of leading edge signal processing
21 solutions for challenging critical missions. Many of Lincoln Laboratory’s prototype embedded systems
22 must be designed with security in mind, so that they can be quickly brought into compliance with DoD’s
23 relevant requirements to support field tests and technology transfers. DoD has now directed that cyber
24 security must be co-developed with mission capabilities and not be treated as an “after-thought,” since
25 any after-the-fact system changes could be prohibitively expensive or even impossible [1]. The co-design
26 of embedded system functionality with its security is difficult as rarely can the security requirements be
27 accurately identified when the design process starts. Also, embedded system engineers tend to focus on
28 well-understood functional capabilities rather than obscure security requirements.
29 The security requirements of an embedded system are determined according to its concept of
30 operations (CONOPS). Security aims at preventing attacks so that a system can be entrusted to perform
31 in support of a successful mission. For critical mission functions, we may need to go a step further and
32 provide resiliency that enables the system to continue functioning, albeit with possibly degraded
33 capabilities, when security fails.

Distribution A: Public Release. This work was sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force
Contract #FA8721-05-C-0002 Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily

endorsed by the United States Governme nt.

34
35
36

37
38
39
40

41
42
43

44
45
46
47
48
49
50
51

52
53
54

55
56
57
58
59
60
61

62
63
64
65
66
67
68

The goals of securing a system can be summarized as the assuring of confidentiality, integrity, and
availability, which is often referred to as the CIA triad. We define the CIA triad of an embedded system
as follows:

* Confidentiality assures that its critical information, such as application code and surveillance
data, will not be disclosed to unauthorized entities.
* Integrity assures that the system operation cannot be altered.

¢ Availability assures that mission objectives cannot be disrupted.

Security must be provided with minimal impacts on the system’s size, weight, power, and cost (SWaP-C)
and development schedule. In addition, the design must consider usability as valid secure systems must
also be practical and usable.

The objective of this paper is to provide an overview of Lincoln Laboratory’s secure embedded system
development methodology and its enabling technologies. We use the development of a hypothetical
secure unmanned aerial system (UAS) embedded system as an example to illustrate how we use
cryptography to ensure confidentiality and integrity. Using this example, we demonstrate the
identification of potential attacks by considering its CONOPS, countermeasures to these attacks, and
discuss the design and implementation of a cryptography-based security architecture. We will also
overview ongoing work to extend the methodology and provide the resiliency required for availability,
which is not provided by cryptography itself.

A comprehensive security technology survey is beyond the scope of this paper. Instead, we introduce a
number of relevant security technologies that Lincoln Laboratory has been developing to address
existing technology gaps in the security of embedded systems.

Challenges in Securing Embedded Systems

An embedded system is a computer system designed for a dedicated function. This is in contrast to a
general-purpose computer system (e.g., a desktop computer). A major objective of creating an
embedded system for a specific task is to optimize it for better performance in terms of smaller form
factor, lower power consumption, higher throughput, etc. As such, an embedded system will provide
very little, if any, SWaP allowance for security. Security thus must not impose excessive overheads on
the system they are protecting.

Every year DoD acquires and operates numerous embedded systems, ranging from intelligence,
surveillance, and reconnaissance (ISR) sensors to electronic warfare/electronic signal intelligence
(EW/ELINT) applications [1]. Depending on their objective mission CONOPS, embedded systems have
different security requirements. For example, a system planned for contiguous United States (CONUS)
deployment could have lower security requirements than a system for forward operating base (FOB)
operation, since the latter are deployed to support tactical operations. Any methodology for securing
embedded systems should be customizable to meet CONOPS needs.

69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85

86
87
88

89
90
91
92
93
94
95

96
97
98
99
100
101
102

It is interesting to note that while DoD has some of the most demanding applications, in terms of
throughput and SWaP-C, the time that DoD drives technology development has long passed. Instead,
DoD now strives to leverage commercial technologies, which are driven by computing, communications,
and gaming industries. The result is that the critical technology in a system is often its software and/or
firmware, which define the system functionality, rather than the processor hardware itself. Security
technologies must be compatible with embedded systems using COTS (commercial-off-the-shelf)
processor hardware platforms.

As military electronic systems continue to increase in sophistication and capability, the cost and
development time of these systems also grow. The use of open systems architecture (OSA) can improve
the development and lifecycle efficiency of asset procurements. DoD has thus directed that all DoD
components and agencies use OSA for acquisition [3]. OSA uses industry consensus, non-proprietary,
system architectural standards so that variable payloads can be shared among variable platforms.
Competition for technology refresh and enterprise-level acquisition are thus promoted. However,
adding security to OSA, if not well-thought-out, could interfere with its openness. As most current
security approaches are ad-hoc, proprietary, and expensive, they are incompatible with OSA principles,
especially when each component individually implements and manages its own security. A system level
secure architecture that will seamlessly work with various OSA components is a challenge.

The current trends of how DoD acquires its embedded systems require new thinking on their
development for security. We will explain the secure embedded system design methodology that
Lincoln Laboratory has developed to address the challenges in securing DoD embedded systems.

Design Process

Figure 1 captures the design process of a secure embedded system with the steps dedicated to security
highlighted. CONOPS is developed from the mission objectives and used to derive both functional and
security requirements. An initial system design is created, evaluated, and implemented. While
functionality and security must be co-developed, it is desirable to decouple their implementations so
that the interference of security to the test and evaluation of functionality is minimized. Note that

several design iterations may be required before the mission objectives are met.

We use the design of a hypothetical small unmanned aerial system (UAS) for a video surveillance
application to illustrate the secure embedded system design process. The CONOPS of this example UAS
application is as follows. At startup, the UAS is provisioned on the ground by loading its long term
credentials for identification and authentication purposes. Mission specific software and firmware,
which are considered to be critical program information (CPI) as they contain information on
destinations, targets, search and track algorithms, etc., are loaded into their respective memories. The

system is then booted up and prepared for execution.

103

104

105
106
107
108
109
110
111

112

113

Mission
Objectives

CONOPS

Functional Threat
Requirements Analysis

System Security
Design Requirements

Performance Security

Evaluation Evaluation
System Security
Implementation Implementation

Test and Evaluation

Figure 1: Secure embedded system design process.

Figure 2 illustrates the embedded system in its execution phase. Under the command and control of a
ground control station (GCS), the UAS takes off, flies to destination, and begins to collect video data.
Target information obtained by processing video data is encrypted and broadcasted to authorized
ground stations using the radio. Raw video data are also saved in the storage for further processing after
landed. At shutdown, both raw and processed video data are considered to be sensitive and must have
been saved securely. Finally, when the system is off, any persistent state, such as the long-term
credentials, must be protected.

Authorized (GCS) Authorized (GT1) Authorized (GT2)

Figure 2: Example UAS application in its execution phase.

114
115
116
117
118
119
120
121
122

123

124

125
126
127
128
129
130
131

132
133
134
135
136
137
138

139
140
141

Figure 3 shows a high-level architecture initially designed for the functionality of this example UAS
embedded system. It consists of a central processing unit (CPU) and a field programmable gate array
(FPGA) interconnected with an Ethernet network. The CPU will be provided with its basic input/output
system (BIOS), operating system (OS), and mission specific application code in memory. The FPGA has its
configuration stored in a firmware memory. Besides a video camera payload, the system also has
memory, storage, and radio, which are accessible by the CPU and/or FPGA through Ethernet. The CPU
handles command and control received through the radio. The video signal is first processed by the
FPGA (e.g., for target detection and identification) and then passed to the CPU for information
extraction (e.g., target tracking).

BIOS, OS, Apps Firmware

CPU FPGA Video

Ethernet

Memory Radio Storage

Figure 3: Example UAS embedded system functional architecture.

High performance embedded system design has been the subject of many books (e.g., [2]). The
functionality design of this UAS is thus beyond the scope of the paper and will not be further elaborated.
Instead, we describe some general security-related considerations on the selection of processing
elements (i.e., the CPU and FPGA). The processing elements must be chosen to securely deliver the UAS
functionality requirements. This UAS application involves sophisticated signal processing and requires
high throughput (e.g., measured by the number of floating point operations per second) with a stringent
SWaP allowance.

In order to support a complicated signal processing algorithm, the CPU will need large memory and
storage. The choice of a popular “mainstream” processor will allow the leverage of available software
libraries in application development, but it may not have the security features desired for the CONOPS.
On the other hand, a “secure” processor with built-in security features may simplify system
development, but it may not possess the appropriate processing power or may not support large
memory space required for the application. Besides, system openness and upgradability must be
considered before choosing a secure processor over a mainstream CPU.

Lincoln Laboratory has developed and demonstrated a secure embedded system architecture that uses
a security co-processor (S-COP) to secure a mainstream CPU. We will describe this technology later in
this paper.

142
143
144
145
146
147

148
149
150
151
152
153
154
155
156

157

158

159
160
161
162
163
164

Many popular FPGAs are built with embedded security features [4]. FPGAs should be selected on their
capability to encrypt and authenticate their configuration bit-streams, incorporate security monitors to
detect attacks, and erase decryption keys to protect the CPI, in this case its firmware, when attacks are
detected. Ideally, the FPGA design flow should allow some level of fault containment and tolerance by
using modular redundancy, watchdog alarms, security level segregation, and test logic (e.g., the IEEE
1149.1 Standard Test Access Port and Boundary-Scan Architecture) disabling.

Threat Analysis

Adversaries want to sabotage U.S. missions and/or develop counter-measures. The first step in
designing a secure system is to analyze the potential attacks that the system may be subjected to when
it is deployed. Its CONOPS determines not only functional requirements, but also potential attacks of an
adversary. The attacks depends on the adversary capability (e.g., a nation-state) and its attack objectives
(e.g., to exfiltrate CPI). In the UAS example, we assume that there is a high probability of equipment loss
due to the small UAS size and its use in hostile areas. The UAS attack tree example in Figure 4 describes
three logical attack surfaces: boot process, system data, and software, and one physical attack surface:
physical system, against which adversaries may attack to exfiltrate CPI.

Exfiltrate Critical Program
Information (CPI)
System Data m Physical System

Data at Rest Operating Systems Busses
Datain Use Integrated Circuits

Datain Transit Applications

Boot Process

i
i

...

Figure 4: Example UAS attack tree.

A secure system must establish a root of trust when it starts. The CPU boot process is thus the
foundation of a secure embedded system and must be protected from attacks on its confidentiality and
integrity. Current practice uses a trusted platform module (TPM) to authenticate software components
[5]. A TPM offers facilities for the secure generation of cryptographic keys and limitation of their use. It
also includes capabilities such as remote attestation, encryption, decryption, and sealed storage. A
software application can also use a TPM chip to authenticate hardware devices. Since each TPM chip has

165
166

167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185

186
187
188
189

190
191
192
193
194
195
196
197
198

a unique and secret key burned in as it is produced, it is also capable of performing platform
authentication.

TPM, being a commercial product, made a number of compromises to ensure adoptability by cost-
averse vendors and privacy concerns of the general public. The manufactured parts had to be
inexpensive and cause as little disruption to the current processing architecture. Additionally, privacy
concerns forced that the use of the device to be an optional and passive part of the processing system
operations. These compromises led to a low performance device without adequate physical protection.
In the next section, we will introduce Lincoln Laboratory’s S-COP security coprocessor equipped with a
physical unclonable function (PUF), which was developed to address the TPM’s inadequacy in tactical
operations.

Alternatively, the latent vulnerability (e.g., bugs) within an authorized software component (e.g., from
open source) may be exploited to compromise system operations. Adversary may exploit these
vulnerabilities to access critical data or gain control of the platform itself. Even though when only
authorized users are allowed to access the system, threats could come from the introduction of
untrusted software (e.g., malware) or unwanted functionality through a third party’s intellectual
property (IP), either through malfeasance or negligence. A secure system must prevent compromised
software from giving an attacker unfettered system access. Commercial systems are starting to address
these issues. Software developers use separation kernels to establish and isolate multiple partitions and
control information flow between these partitions. On the hardware side, for example, Intel has been
developing a Secure Guard Extensions (SGX) that enforces separations between threads executing on
the same processor [6].

Since the UAS is built with minimal system software for dedicated purposes, the exploitation of software
vulnerability may be less likely than a general-purpose computer. The strictly controlled provisioning
environment accessible by a very limited number of authorized users also reduces the risk of introducing
unverified and/or untrusted software to the UAS.

One should always assume that an adversary will attempt to eavesdrop on the UAS data. For example,
as the UAS communicates wirelessly, an adversary could potentially eavesdrop on the communication.
Data protection is thus a high priority for a secure processor. We need to protect the confidentiality and
integrity of the UAS data existing in three forms: data-in-use, data-at-rest, and data-in-transit. Various
hardware and software cryptographic solutions, for example, self-encrypting drives' and HAIPE (High
Assurance Internet Protocol Encryptor), are available. However, the challenge is that encryption must be
fully integrated with the processor for efficient performance and protection. Also, the effectiveness of
encryption depends on its key management. We will explain an embedded system security framework
that is based on the Lincoln Open Cryptographic Key Management Architecture (LOCKMA) library.

! self-encrypting drives, commonly used in laptop protection, are not adequate for classified information
protection.

199
200
201
202
203
204
205
206
207

208
209
210
211
212

213
214
215
216
217
218
219

220
221
222
223

224
225
226
227

228
229
230
231
232

233
234
235

Physical attack is a particular threat to tactical systems. The UAS needs to consider physical attack since
there is a higher probability for adversaries to gain physical access to the device, e.g., by capturing it.
One must then assume that the adversary could have an extended period of time to reverse engineer
the system. The adversary may want to modify or reverse engineer sensitive system components.
Protection against physical attack is also required in foreign military sales (FMS). Like an adversary, a
foreign nation may attempt to explore the system that it has purchased, either to leapfrog its own
technology, or to gain unauthorized capabilities. The most popular technique to date is to use a
protective enclosure to delay unauthorized accesses, which has to deal with the challenge of
maintaining standby power for intrusion detection and responses.

Security Metrics

In this section we define a few security metrics for evaluating a system during its design process. One of
the challenges in the development of secure embedded systems is the inherent difficulty in
guantitatively specifying and measuring security. Based on the CIA triad and usability design principles,
we have created three practical security metrics to facilitate the design of a secure embedded system:

Trustworthiness - a qualitative measure of the system’s effectiveness in defensing against potential
threats relevant to its CONOPS. Based on the current system design and the confidence in the fidelity of
that information, one can develop a certain level of trust in its behavior. The fact that a system is
equipped with a defense mechanism against a certain threat apparently improves its security and thus
trustworthiness. However, while unprotected vulnerabilities reduce security, it is valuable to understand
the current system’s vulnerabilities; one can apply the protection metric (described next) to improve the
design by supporting “added-on” protection technologies to address its vulnerabilities.

Protection - a qualitative measure of the system’s capability to support “added-on” protection
technologies and address vulnerabilities in a CONOPS. The system security can be expressed as a
function of the trustworthiness and protection metrics, as they together gauge its security,
vulnerabilities, and protection.

Usability - a qualitative measure of the system’s suitability for a particular CONOPS. A system that is
highly secure but incapable of delivering the required functionality is nevertheless not a valid design.
This metric evaluates a system design by considering its throughput, portability, upgradability, SWaP
(size, weight, and power) and other similar parameters.

These security metrics do not support absolute measurements, but provide parameters to guide the
design of security into an embedded system as its mission functionality architecture evolves. In addition,
multiple system architectures can be qualitatively evaluated and compared to determine relatively how
well they provide security. As these metrics are by nature qualitative and subjective, sufficient
documentation of justification must be kept for each decision made.

The processing requirements, threats and protection needs of a system do not stay constant over the
course of its operation. We thus define four operational phases for a secure embedded system so that it
can be evaluated accordingly:

236
237

238

239

240

241
242
243
244
245
246
247
248
249
250

251
252
253
254
255
256
257
258
259
260
261

Startup — In this phase, a system is being “booted” into a state suitable for operations. A Trusted
Computing Base (TCB), which defines the components being trusted for security, is established.

Execution — The system is in the state of operation and performs functions required by the mission.
Shutdown — In this phase, the system is in the process of turning off.

Off — The system has been powered down.

Secure Embedded System Architecture and Enabling Technologies

As mentioned, the CPl of a commercial-off-the-shelf (COTS) based embedded system is mostly in its
software and firmware so encryption is the foundation of its overall security. There are many efficient
and iron-clad secure cryptographic primitives, such as the NSA approved Suite B cryptography [7]. These
primitives can be implemented with software, firmware, or hardware, and can often be obtained as
open-source IPs (intellectual properties). However, simply using “standard” cryptographic primitives
cannot guarantee the adequate implementation of security functions. The manner that the
cryptographic primitives are assembled and coordinated into the desired application-specific security
functions is critical to their effectiveness. Also, encryption effectiveness depends on key management,
which includes the generation, distribution, and protection of keys.

Lincoln Laboratory has developed a solution to address these challenges. Lincoln Laboratory Open
Cryptographic Key Management Architecture (LOCKMA) is a highly portable, modular, open software
library of key management and cryptographic operations that are suitable for embedded uses. Designed
to secure a wide range of missions, it provides user, identity, and key management and supports for
hardware and software cryptographic primitive kernels. LOCKMA's frontend application programming
interface (API) provides application developers with a simple and intuitive access to LOCKMA’s core
functionality. Figure 5 summarizes LOCKMA's interfaces to high level security functions and low level
crypto primitives. To use LOCKMA, developers are not required to have advanced knowledge of the
cryptography or key management algorithms implemented by LOCKMA’s core modules. These modules
handle the processing of key management messages. They make extensive use of cryptographic
primitives available in several commercial and Open Source libraries.

Frontend API Core Modules Backend API

Hardware Crypto Kernels

(e.g. SHAMROCK)

Dynamic Logging Trus and Datarministic Random Number Gansrsios

AES Crppo SHAZ

App. Requests ECOH ECDSA

Processor PEROeS TIAG

KM Messages SW/HW Abstract
Processor Interface

Software Crypto Functions

ASN.1Parser / Compiler
X.509 Parser

262
263 Figure 5: LOCKMA provides application interface, high level security functions, and low level
264 cryptographic kernels.

265 Lincoln Laboratory has implemented LOCKMA in a security coprocessor (S-COP), which implements
266 cryptographic primitives in hardware. The added benefits of hardware implementation include much
267 faster computation times, lower power use, and hardware separation and protection of sensitive keys
268 from non-sensitive data and code. We have demonstrated the use of S-COP to secure an embedded
269 system.

270 Figure 6 shows the UAS embedded system architecture in which the CPU secured with an S-COP and a
271 physical unclonable function (PUF). The S-COP employs dynamic key management and accelerated Suite
272 B cryptography for the measurement and verification steps necessary to securely boot the CPU. The PUF
273 provides an inviolable root-of-trust, from which a unique cryptographic key is derived.

BIOS, OS, Apps Firmware
PUF
CPU FPGA Video
Ethernet
Memory Radio Storage
274
275 Figure 6: An S-COP is used along with a PUF to secure a COTS CPU.

276 Lincoln Laboratory has adopted an optical PUF, which can be implemented on a fully fabricated printed
277 circuit board (PCB). As illustrated in Figure 7, the PUF is constructed by adding one or more light
278 emitting diodes (LEDs) and an imager to the PCB, which is then coated with a thin polymer planar

10

279
280
281
282
283
284

285

286
287

288
289
290
2901
292
293

294
295
296
297
298

299
300
301
302
303
304

waveguide. Upon power-up, the S-COP derives a unique value from the imager, which receives light
emitted by the LEDs and travelled through the waveguide. This value is then used for identification and
key derivation. Manufacturing variations ensure a unique identification value for each board. Invasive
attempts to learn about the PUF value (e.g., for cloning purposes), even when the PCB is unpowered,
will disturb and damage the coating and irreversibly destroy the PUF value. Cloning and other
unauthorized actions are thus prevented.

LED

(a) (b)

Figure 7: Optical PUF implemented with a waveguide; (a) operating concept illustration, (b)
implementation on a fully fabricated PCB.

Many factors, for example, temperature, aging, etc., can cause the image to vary. A technique called
fuzzy extraction is employed to ensure that the same key will be derived from the PUF under various
situations [8]. This ability allows the S-COP to secure the boot process, load only trusted software, and
ensure that the unique identity is intact, before, during, and after boot process. In addition to protecting
data-at-rest with cryptography, the S-COP also uses key management to support secure communications
between subsystems to protect data-in-transit.

This architecture allows software applications to be developed and tested initially without invoking
security features. When a system is provisioned for deployment, the PUF is applied to its PCB and the
finalized software code encrypted with the PUF derived key is loaded. The system will not start if its PUF
value is incorrect, causing a failed software decryption. The decoupling of the S-COP and the CPU allows
DoD systems to leverage mainstream CPUs, enhancing their performance, usability, and upgradability.

Figure 8 shows a testbed that we have developed to evaluate the S-COP-based secure architecture. In an
unsecured architecture, the CPU reads in the basic input output system (BIOS), and bootstraps the
operating system (0OS). Without authentication, the CPU is vulnerable to maliciously modified BIOS and
0OS. The S-COP-based secure architecture addresses this vulnerability by authenticating the BIOS, OS and
applications, which is illustrated in Figure 9. When the system powers up, the S-COP halts the CPU while
it performs authentication. It first reads the PUF and derives a key. The key is used to decrypt the BIOS.

11

305
306
307
308
309
310
311

312

313

314

315

If successful, the CPU is released to execute the BIOS. The SCOP then authenticates and decrypts the OS,
and boots the system up. Encrypted applications are loaded and handled in the same manner. In
addition to associating an application with a specific system, the system can use LOCKMA dynamic key
management to dynamically and seamlessly adjust the authorization of application execution (e.g., in
time-specific and/or location-specific modes). Figure 10 illustrates the data protection functions of the
S-COP, which uses LOCKMA to set up secure encrypted communication channels between multiple
systems as well as encrypt the storage (data-at-rest).

Secure Processor
(PUF+ CPU + S-COP)

Figure 8: A secure processor integrating a CPU, an S-COP, and a PUF.

12

316

317

318

319

320

321

322

323
324
325
326
327

Step 1 Step 2 Step 3 Step 4 Step 5 E Done

cots cots I cors
3 § : s-cop
8 ,

Y m = @

. Decrypt Execute Decrypt -
ol o Eand o o —E—

Figure 9: Secure boot process. The CPU is halted until S-COP successfully verified system integrity.

PUF Coating
Storage
K2
(a)
PUF Coating PUF Coating
s HeeHHH=He
(b)

Figure 10: Data protection of (a) data-at-rest; (b) data-in-transit.

Evaluation

In terms of the CIA triad, the S-COP addresses confidentiality and integrity by protecting the boot
process, data, and communication from unauthorized access and alternation. The S-COP itself does not
ensure a system’s availability, but it can be adapted to support other agility and resilient measures such
as moving target technologies [9].

13

328
329
330
331
332
333
334
335
336

337
338
339
340
341
342
343
344

345
346
347

348
349
350
351
352
353
354

355
356
357
358
359
360
361
362
363
364

As an example, we evaluate the hypothetical UAS embedded system, after adopting the S-COP-based
secure architecture, using the three security metrics: trustworthiness, protection, and usability. A
mainstream unsecured CPU by itself receives low trustworthiness ratings during all system operation
phases as we assume that it needs an inherently large TCB and lacks hardware enforced boot attestation.
The security of such a CPU enhanced with S-COP dramatically increases across all system operation
phases, earning it higher trustworthiness ratings. However, during the execution phase, one still needs
to trust the operating system, which may have inherent vulnerabilities. The trusted boot does not
completely eliminate the risk of running untrusted/unverified codes that could potentially escalate
privileges or exfiltrate information.

If a CPU has no explicit support of volume protection, it will receive low protection ratings during the
boot phase. The integration with a TPM provides key storages and measurements. However, any usage
of these keys still requires the operating system to handle them properly, thus increasing the TCB. A
lack of overall support for physical protection or hardware enforced encryption of code and data allows
for snooping or modification of memory during the execution phase. During the off phase, the TPM
could be physically replaced and thus a new set of measurements could be inserted into the system. The
S-COP-based secure architecture mitigates these deficiencies by creating a root of trust with a PUF and
can be used to support volume protection.

Since the S-COP can be adapted to secure a mainstream CPU, the usability of the secure UAS embedded
architecture rates high as it can leverage all the benefits of a COTS CPU, such as high performance (e.g.,
for signal processing), large cache and memory support, and widely supported software libraries.

Open System Architecture Security

As military electronic systems continue to increase in sophistication and capability, the cost and
development time of these systems also grow. The use of open system architecture (OSA) can improve
the development and lifecycle efficiency of asset procurements. Typically OSA incorporates several
buses with well-defined interfaces for communications (controls and data) between components. The
system can then be adapted to different functionality by providing proper components and defining
their interconnections.

Besides the securing of a CPU, LOCKMA is being developed into a crypto-based secure framework that
has been successfully demonstrated in OSA embedded system protection. The framework employs
LOCKMA, e.g., in the form of collaborating S-COPs, to provide encryption of data-in-use, data-in-transit,
and data-at-rest to countermeasure eavesdropping, probing and unauthorized accessing. In addition, a
trusted configuration is enforced by extending the secure boot concept and accepting only
predetermined payloads and preventing unauthorized hardware and/or software substitute. An
example configuration illustrated in Figure 11 consists of several payloads and processors and a LOCKMA
security manager (LSM). The authorized mission configuration is specified by a digitally signed “config
file” that specifies authorized payloads, allowed combinations of payloads, and secure communication
channels.

14

365

366
367

368

369
370

371
372
373
374
375
376
377
378
379

Subsystems ' LOCKMA Security

P B ¢ o E - Manager (LSM)

2 [ms Y =

Radar Camera Weapon Processor Processor ﬂ W
/ [|_=j !) ! L . i

f £y Ry £y fy 1r .

. Communications Bus /M

Figure 11: In a LOCKMA-based OSA security framework, LSM checks subsystem credentials against a
config file to ensure that the configuration is authorized.

Principals
A, B, C, D,

Constraints

A or B
A and D

Channels

Channell: SiDr'fa' ::Ire
Pub: A e
Sub: D, E

(N
Figure 12: Security configuration file for enforcing payload authorization and securing communication
channels.

At start-up, the LSM verifies the digital signature of the config file and ensures that it is unaltered. Using
the config file, the LSM collects subsystem credentials and confirms that the system has no unexpected
payloads and its configuration (i.e., component combination) is authorized. The system now starts and
the LSM continues to set up secure communication channels. Figure 13 illustrates that each subsystem is
provided with, e.g., by embedding an S-COP, a key management function (KM) and an AES (advanced
encryption standard) encryption/decryption function. Subsystem A creates a key wrap containing a
symmetric crypto key that is only accessible by authorized subsystems D and E, and establishes a
communication channel. The channel users retrieve the common secret session key and use it for
encrypted communications. The system is now ready to perform its mission objectives.

15

380

381

382

383

384
385
386

387
388
389
390
391
392
393

394
395
396
397
398
399
400

401

Subsystems LOCKMA Security

Manager (LSM)

A | S A
[\
f y oy = y Ry |y | v
. Coml’nunicationsB s
KeyWra;Ia @® _]
D E Y
(a)
Subsystems ' LOCKMA Security
A ¢ { Manager (LSM)
= I \ 77777777777777777777777 . ile
] Ry £y 17 (N
. Communications Bus @‘l

(b)

Figure 13: In a LOCKMA security framework, (a) subsystem A sends a key wrap openable only by
subsystems D and E to retrieve a session key, and (b) all three subsystems are then enabled to carry
out encrypted communication.

Ongoing Work

Security is of asymmetric nature as an attacker can render any system defense useless by discovering a
single, unexpected vulnerability. As it is impossible to correctly predict every future attack, securing an
embedded system to prevent it from being attacked is not a guarantee of mission assurance. Just being
secure is no longer adequate, systems must also be resilient. Lincoln Laboratory is vigorously pursuing
an answer to the essential mission assurance question: “What can be done if the attacker is successful
despite the best practice to provide security?”

Our objective is to define a standardized, reference security and resilient architecture for future DoD
embedded systems. We want to ensure that the system continues to function when things do not go as
we expected. Our work is guided by the four stages of actions involved with the resiliency of an
embedded system: anticipate, withstand, recover, and evolve [10]. Our current R&D effort focuses on
approaches that enable a system to withstand attacks and complete mission goals, recover from a
degraded state back to a nominal state, and evolve to improve defense and resiliency against further
threats.

16

402
403
404

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

424

Acknowledgements

The authors would like to acknowledge technical contributions from the team members: Branden

Chetwynd, Kate Thurmer, Rob Cunningham, Kyle Ingols, M. Spain, B. Fuller, C. Walz, W. Bastow, J.
Gagnon, R. Govotski, K. Gettings, F. Ennis, J. Muldavin, M. Geis, and M. Burke.

References

(1]
(2]

(3]
(4]

(5]
(6]
(7]
(8]
(9]

(10]

http://www.dtic.mil/whs/directives/corres/pdf/850001 2014.pdf, accessed July 2015.
D. Martinez, R. Bond, and M. Vai, ed., High Performance Embedded Computing Handbook: A
Systems Perspective, CRC Press, 2008.

DoD Open Systems Architecture Contract Guidebook for Program Managers, V. 1.1, June 2013.

T. Huffmire, C Irvine, T. Nguyen, T. Levin, and R. Kastner, Handbook of FPGA Design Security,
Springer Netherlands, 2010.

“How to Use the TPM: A Guide to Hardware-Based Endpoint Security,” Trusted Computing Group,
2009.

“Software Guard Extensions Programming Reference,” Intel, September 2013.
https://www.nsa.gov/ia/programs/suiteb_cryptography/, accessed January 2015.

M. Spain, B. Fuller, K. Ingols, and R. Cunningham, “Robust Keys from Physical Unclonable
Functions,” IEEE International Symposium on Hardware-Oriented Security and Trust, May 6, 2014.
H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding Focus in the Blur of Moving Target
Techniques,” IEEE Security & Privacy, March/April Issue, 2014.
http://www.mitre.org/publications/technical-papers/cyber-resiliency-engineering-framework,

accessed July 2015.

17

